54 research outputs found

    Constructing Datasets for Multi-hop Reading Comprehension Across Documents

    Get PDF
    Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.Comment: This paper directly corresponds to the TACL version (https://transacl.org/ojs/index.php/tacl/article/view/1325) apart from minor changes in wording, additional footnotes, and appendice

    Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection

    Get PDF
    Grammatical error correction, like other machine learning tasks, greatly benefits from large quantities of high quality training data, which is typically expensive to produce. While writing a program to automatically generate realistic grammatical errors would be difficult, one could learn the distribution of naturallyoccurring errors and attempt to introduce them into other datasets. Initial work on inducing errors in this way using statistical machine translation has shown promise; we investigate cheaply constructing synthetic samples, given a small corpus of human-annotated data, using an off-the-rack attentive sequence-to-sequence model and a straight-forward post-processing procedure. Our approach yields error-filled artificial data that helps a vanilla bi-directional LSTM to outperform the previous state of the art at grammatical error detection, and a previously introduced model to gain further improvements of over 5% F0.5F_{0.5} score. When attempting to determine if a given sentence is synthetic, a human annotator at best achieves 39.39 F1F_1 score, indicating that our model generates mostly human-like instances.Comment: Accepted as a short paper at EMNLP 201

    Convolutional 2D Knowledge Graph Embeddings

    Full text link
    Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across most datasets.Comment: Extended AAAI2018 pape

    Question and Answer Test-Train Overlap in Open-Domain Question Answering Datasets

    Get PDF
    Ideally Open-Domain Question Answering models should exhibit a number of competencies, ranging from simply memorizing questions seen at training time, to answering novel question formulations with answers seen during training, to generalizing to completely novel questions with novel answers. However, single aggregated test set scores do not show the full picture of what capabilities models truly have. In this work, we perform a detailed study of the test sets of three popular open-domain benchmark datasets with respect to these competencies. We find that 60-70% of test-time answers are also present somewhere in the training sets. We also find that 30% of test-set questions have a near-duplicate paraphrase in their corresponding training sets. Using these findings, we evaluate a variety of popular open-domain models to obtain greater insight into what extent they can actually generalize, and what drives their overall performance. We find that all models perform dramatically worse on questions that cannot be memorized from training sets, with a mean absolute performance difference of 63% between repeated and non-repeated data. Finally we show that simple nearest-neighbor models out-perform a BART closed-book QA model, further highlighting the role that training set memorization plays in these benchmark

    R4C: A Benchmark for Evaluating RC Systems to Get the Right Answer for the Right Reason

    Get PDF
    Recent studies have revealed that reading comprehension (RC) systems learn to exploit annotation artifacts and other biases in current datasets. This prevents the community from reliably measuring the progress of RC systems. To address this issue, we introduce R4C, a new task for evaluating RC systems' internal reasoning. R4C requires giving not only answers but also derivations: explanations that justify predicted answers. We present a reliable, crowdsourced framework for scalably annotating RC datasets with derivations. We create and publicly release the R4C dataset, the first, quality-assured dataset consisting of 4.6k questions, each of which is annotated with 3 reference derivations (i.e. 13.8k derivations). Experiments show that our automatic evaluation metrics using multiple reference derivations are reliable, and that R4C assesses different skills from an existing benchmark.Comment: Accepted by ACL2020. See https://naoya-i.github.io/r4c/ for more informatio

    Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations

    Get PDF
    Learning good representations on multi-relational graphs is essential to knowledge base completion (KBC). In this paper, we propose a new self-supervised training objective for multi-relational graph representation learning, via simply incorporating relation prediction into the commonly used 1vsAll objective. The new training objective contains not only terms for predicting the subject and object of a given triple, but also a term for predicting the relation type. We analyse how this new objective impacts multi-relational learning in KBC: experiments on a variety of datasets and models show that relation prediction can significantly improve entity ranking, the most widely used evaluation task for KBC, yielding a 6.1% increase in MRR and 9.9% increase in Hits@1 on FB15k-237 as well as a 3.1% increase in MRR and 3.4% in Hits@1 on Aristo-v4. Moreover, we observe that the proposed objective is especially effective on highly multi-relational datasets, i.e. datasets with a large number of predicates, and generates better representations when larger embedding sizes are used

    Training Adaptive Computation for Open-Domain Question Answering with Computational Constraints

    Get PDF
    Adaptive Computation (AC) has been shown to be effective in improving the efficiency of Open-Domain Question Answering (ODQA) systems. However, current AC approaches require tuning of all model parameters, and training state-of-the-art ODQA models requires significant computational resources that may not be available for most researchers. We propose Adaptive Passage Encoder, an AC method that can be applied to an existing ODQA model and can be trained efficiently on a single GPU. It keeps the parameters of the base ODQA model fixed, but it overrides the default layer-by-layer computation of the encoder with an AC policy that is trained to optimise the computational efficiency of the model. Our experimental results show that our method improves upon a state-of-the-art model on two datasets, and is also more accurate than previous AC methods due to the stronger base ODQA model. All source code and datasets are available at https://github.com/uclnlp/APE.Comment: 7 pages, 1 figure, to be published in ACL-IJCNLP 202
    • …
    corecore